IAMON Workshop NTUA, Athens, Greece 10 July 2024

Modelling drum columns with discrete elements – Practical issues

José V. Lemos LNEC, Lisbon, Portugal

Outline

- Discrete elements
 - 3DEC and related approaches
- Blocks
 - Rigid, Deformable, Time steps
- Contact discretization
- Joint stiffness
- Block breakage
- Reinforcement elements
 - Local reinforcement, User-programmed elements
- Damping
 - Mass, Stiffness, Maxwell

Discrete elements (DEM)

- **DEM** is a class of numerical methods for discontionuous structures with many different formulations:
 - DEM, RBSM, FDEM, NSCD, AEM, ...
- This presentation refers mainly to Cundall's approach (e.g. 3DEC) and related formulations characterized by:
 - Blocks: Rigid or Deformable (internal FEM mesh)
 - Point contacts
 - Large displacements with geometry and contact updates
 - Essential for large amplitude rocking
 - Dynamic analysis with explicit time stepping algorithms
 - Requires small time steps
 - Robust for strongly nonlinear problems and geometry/contact updates

DEM – Block representation

- Rigid blocks •
 - Block moves as a rigid body
 - All system deformability lumped at the joints (joint stiffness parameters)
 - Computational efficient for dynamic analysis
- Deformable blocks •
 - Internal finite element mesh
 - Internal stress state
 - Elastic or non-elastic behaviour
- Time step
 - Rigid blocks

Deformable blocks

 $\Delta t < \frac{h}{c_p}$

deformable block with internal mesh of tetrahedra

Example

Parthenon column (Psycharis et al. 2003)

- Rigid block time step
 - Kn = 1 GPa/m
 - ∆t = 2.8e-4 s

- Deformable block time step
 - Zone (element) edge = 0.5 m
 - E = 30 GPa
 - $\Delta t = 2.3e-5 s$

Time step governed by smallest tetrahedral height, difficult to control in standard mesh generation

LABORATÓRIO NACIONAL DE ENGENHARIA CIVII

Rigid blocks – Contact discretization – Face triangulation

- The triangulation of the rigid block faces ٠ governs the number of contact points located at
 - Vertex-face locations
 - Edge-edge locations
- **Options (in 3DEC)** ٠
 - Default triangulation
 - Edge-max e
 - Radial
 - Radial-8 (e.g., for bending of quadrilateral crosssections)

IAMON Workshop – Athens – 10 July 2024

Radial-8

Radial

Default triangulation

Edge-max 0.5

LNEC | 5

Joint stiffness

- Rigid block models: joint stiffness parameters (Kn, Ks) represent the global structural deformability
- For stone block masonry with dry joints and stiff units, a substantial amount of deformability may be due to the joints (irregularity, non-planarity, damage)
- Natural frequencies provide a measure of the in situ deformability, and may be used to estimate joint stiffnesses

Num.

2.88 Hz

(a) Mode 1

Exp.

2.81 Hz

Example

Roman temple, Évora, Portugal (Nayeri 2012; Oliveira et al. 2014)

 Mode
 Exp.
 Num.

 1
 2.81
 2.88

 2
 3.21
 3.08

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL IAMON Workshop – Athens – 10 July 2024

Natural frequencies – Global modes

Joint stiffnesses estimated from measured ٠ frequencies of free-standing columns

Mode

1

2

- Kn = 2.95 GPa/m
- Ks = 1.47 GPa/m

(b) Second global mode

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

IAMON Workshop – Athens – 10 July 2024

(Nayeri 2012)

Block fracture / breakage

- Deformable block models with non-elastic materials
 - Computational demanding
- Bonded-block models Simplified simulation of block
 fracture in rigid block models
 - Insert potential fracture planes in blocks
 - Contacts are assigned the cohesive and tensile strength of the block material
 - Block splitting simulated by failure of contacts
- More refined models may be created using random Voronoi networks of potential failure planes (mostly for static analysis)

(Sarhosis & Lemos 2018; Pulatsu et al. 2020)

Reinforcement elements

• Options in 3DEC

- Beam-type elements
 - Small time steps due to structural nodal masses
- Local reinforcement Connects 2 blocks across a joint
 - Represented by elasto-plastic elements (yielding / breakable springs) acting in the normal or shear directions
- User-programmed reinforcement elements
 - Connection between 2 blocks
 - Constitutive model programmed by user (Fish or Python)
 - Input: Relative movement between connection points A, B
 - Output: Forces to be applied to blocks

Damping – Rayleigh

Energy dissipation

- Constitutive model provides part of the energy dissipation
 - Frictional sliding; Cohesive/Tensile strength softening
- Some amount of viscous damping usually required to match field data
- Rayleigh Mass-proportional component
 - Low values typically used
 - May affect failure modes (low frequency mechanisms)
- Rayleigh Stiffness-proportional component
 - Physically meaningful
 - Requires a time step reduction in explicit algorithms

 $\boldsymbol{\xi}$ - fraction of critical damping at highest frequency

0.2 -Mass 0.175 - Stiffness 0.15 Mass+Stiffness Damping ratio 0.125 0.1 0.075 Stiffness 0.05 Mass 0.025 Frequency Rayleigh damping

β

Damping – Maxwell elements

- Maxwell damping / Frequency range damping
 - Rigid block model: elements applied at joints
 - Near uniform damping over a given range
 - Efficient for explicit algorithms
- Drawback: The spring in Maxwell elements causes a small increase in frequencies
- Advantage: Provides performance close to stiffness damping without time step penalty

Block rocking experiments (Peña et al. 2007)

Normal stiffness

Kn = 10 GPa/m Sfiffness damping: $\beta = 8 \times 10^{-5} s$ Maxwell damping: 6% in 5-250 Hz

Thank you

